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Whitening for Photometric Comparison of Smooth
Surfaces under Varying Illumination

Abstract

We consider the problem of image comparison in order to match smooth sur-
faces under varying illumination. In a smooth surface nearby surface normals are
highly correlated. We model such surfaces as Gaussian processes and derive the
resulting statistical characterization of the corresponding images. Supported by
this model, we treat the difference between two images, associated with the same
surface and different lighting, as colored Gaussian noise, and use the whitening
tool from signal detection theory to construct a measure of difference between
such images. While our Gaussian assumption is a simplification of reality, we find
that this measure functions well in practice for both synthetic and real smooth ob-
jects. Our model does not apply for objects associated with rougher geometry and
sharp albedo changes. Existing methods handle these situations well, suggesting
that a combined method would function best for general objects.

1 Introduction

Image comparison is a fundamental component in many computer vision tasks

such as recognition, alignment and tracking. Various measures for comparing im-

ages under varying illumination have been proposed[6, 13, 15, 1, 3]. These meth-

ods can be shown to work well on objects containing discontinuities or places

of rapid change in albedo or shape. However, comparing images of smooth sur-

faces with no edges or texture under varying illumination remains a challenging

problem. This problem is important since most real surfaces are complex and

contain smooth, untextured areas along with rough and textured ones. The more

accurately we can handle all types of shape, the better we can hope to achieve

accurate recognition or dense registration or tracking. In this paper we propose a

new measure for image comparison especially designed for smooth surfaces. We
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demonstrate this comparison method on the problem of recognition under varying

illumination and fixed pose.

Previous approaches have focused on comparing representations of images

that are invariant, or quasi-invariant to lighting. Edges are a classic example. [3]

discuss the quasi-invariance of derivative operators to lighting changes. Gabor jets

are also widely used for image comparison, in part because they are also consid-

ered to be insensitive to lighting changes (eg., [15]). [6] point out that the direction

of the gradient is relatively insensitive to lighting changes. However, it is well-

known that quasi-invariance to lighting changes is difficult to achieve for smooth

objects. This is made explicit in the analysis of [6], which shows that gradient

direction is truly invariant to lighting direction for surfaces with discontinuities,

and varies more rapidly the smoother an object is.

We approach this problem by constructing a statistical model of smooth shapes

and then using this to model the effect that lighting changes have on the appear-

ance of a smooth object. Specifically, letI1 andI2 be two images of the same

surface taken under different lighting conditions, and define thedifference image

to beId = I1 − I2. With a statistical characterization ofId in hand, we can then

design an appropriate detection strategy for image comparison.

For example, the simplest image comparison method is to just take‖Id‖,
which is equivalent to taking the sum-of-squared-differences (SSD) betweenI1

andI2. This is optimal ifId is independent, identically distributed Gaussian noise.

However, nearby points on smooth surfaces have highly correlated normals that

produce highly correlated gray levels. So nearby values ofId are not independent.

We tackle this problem by finding operators to decorrelate the pixels ofId prior

to computing its magnitude. Signal detection theory tells us that this is the opti-
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mal approach whenId consists of colored (non-independent) Gaussian noise. We

show that for a simple model of smooth surfaces, this is a good characterization

of Id.

We use whitening to lessen dependencies inId. Whitening is a common tech-

nique in statistics and signal processing. It relies on a known second order statis-

tical description ofId. Whitening has also been used for decorrelation of images

in different image processing tasks such as watermarking [8, 7], image restora-

tion [19, 4, 5], and texture feature extraction [9, 16]. Many methods have used

some differential operators or the Laplacian [18] to approximate the whitening

filter, though Lin and Attikiouzel [16] used a 2D causal linear prediction model to

derive whitening filters in a feature extraction framework.

We start by specifying a simple model of smooth, Lambertian objects and

derive the covariance structure of the images they produce. This allows us to

theoretically justify the use of whitening. Then we propose a way to implement

the whitening process and to use it for image comparison. The method is tested in

comparison to other methods on synthetic and real data and it is shown to be very

effective for smooth objects. In a complete system our approach can be combined

with other methods that perform well on rough surfaces.

2 The Whitening Approach

Our goal is to define a distance between images that will be low between two

images,I1, I2 that were created by the same object under two different lighting

conditions, and large otherwise. A perfect solution is impossible, because two

different objects can look the same under different lighting conditions [2] and, in

fact, for any two images there always exists a single object that could produce
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both, under two different lighting conditions, [6].

We will take a statistical approach, regarding the difference image,Id = I1−I2

as a random variable. We analyze this considering a Lambertian surface illumi-

nated by distant point sources. Neglecting shadows, we can model the images as:

I1 = ρNs1 andI2 = ρNs2, whereN are surface normals,ρ is albedo, ands1,

s2 are light sources in two images. The difference image then is an image itself,

associated with the same object geometry and a difference lighting

Id = ρNs1 − ρNs2 = ρN(s1 − s2) (1)

Dependencies that exist between the nearby surface normals of an object lead to

dependencies inId. To handle these we modelId ascoloredGaussian noise. Col-

ored Gaussian noise captures noise with dependencies, whereas white noise is in-

dependent. Note that the difference between two images associated with different

objects would be transformed to white noise as well, since each image individu-

ally would be turned into white noise. However, the difference image produced

by two different objects would be of much larger magnitude.

While this model is not strictly true, we will show that it is a valuable approx-

imation that opens the way to using linear filtering to reduce dependency in the

difference image. We will next review whitening, from signal processing, which

removes correlations in Gaussian noise. Then we will present a simple model of

smooth surfaces that allows us to analyze the dependencies inId. We then show

how to whiten difference images. Finally, we describe how to use the results for

recognition.
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2.1 Whitening in Signal Processing

Let n represent a set of pixels in the difference image, as a vector. Assume thatn

is Gaussian colored noise. This implies that it is fully characterized by its first and

second order statistics. In particular, the whitening filter may be designed using

the covariance matrix. LetC = E[nnT ] be the covariance matrix characterizing

the distribution ofn (E denotes expected value). LetW be a matrix composed of

the scaled eigenvectors ofC, 1√
λi

ei as rows. Then, the components ofy = Wn

are independent, as apparent from their Gaussianity and their covariance:

E[yyT ] = diag(λ1, λ2, . . . λm)

That is, the multiplication by the matrixW “whitens” the vectorn.

2.2 A Covariance Model for Natural Images - Rough Plane Co-
variance

Consider a surface, characterized by its normal vectors, which make a small ran-

dom perturbation about a common direction (without loss of generality thez axis).

We refer to such a surface asroughly planarand assume that locally a smooth sur-

face behaves like a roughly planar surface. This is a generalization of the common

facet model [12]. The surface is given by a functionz = f(x). The normals at

every pointx are random (but not independent!) and every one of them is spec-

ified by a single parameterθ, which is its angle relative to thez axis (Figure 1).

Quantitatively we characterize the functionθ(x) as a wide sense (w.s.) stationary

Gaussian random process [17]. That is, we assume that the expected value at ev-

ery point is constantµθ = 0, that the varianceCθ(x, x) = σ2
θ is constant as well,
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Figure 1: The roughly planar (random) surface is specified (in 2D approximation)
by the angleθ(x) that the normal makes with thez direction.

and that the auto-correlation

Cθ(x1, x2) = r(x1, x2)σ
2
θ = r(|x1 − x2|)σ2

θ

depends only on the distance between two points.r(|x1 − x2|) is a correlation

coefficient. We also assume that the surface is Lambertian, and that its albedoρ,

is constant, at least locally. For a distant light source, illuminating the surface at

angleφ (relative to thez axis), the reflected light at the locationx is

I(x) = ρ(sinθ(x), cosθ(x))(sinφ, cosφ)T

Proposition 1: Under the above assumptions the reflected light functionI(x) is a

random w.s. stationary process. Its expected value, variance and auto-correlation

are:

E[I(x)] = ρcosφe−σ2
θ/2

σ2
I =

1

2
ρ2(sin2φ(1− e−2σ2

θ ) + cos2φ(1− e−σ2
θ )2)

CI(x1, x2) =
1

2
ρ2(sin2φe−σ2

θ (erσ2
θ − e−rσ2

θ ) (2)

+ cos2φ(e−σ2
θ (erσ2

θ + e−rσ2
θ )− 2e−σ2

θ ))

wherex1, x2 are the two points for which the correlation coefficient of the tangent

direction isr = r(|x1 − x2|).
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Proof: The reflected light functionI(x) is a random process. Its expected value

is:

E[I(x)] = ρ(sinφE[sinθ(x)]+cosφ E[cosθ(x)]) = ρcosφE[cosθ(x)] = ρcosφe−σ2
θ/2.

(3)

In computing the variance, we make use of the Gaussian integral
∫
∞ cosx e−x2/2a2

dx =
√

2π|a|e−a2/2 [11].

The variance ofI(x) is:

σ2
I = E[(I(x)− E[I(x)])2]

= ρ2E[(sinφsinθ + cosφcosθ − cosφE[cosθ])2]

= ρ2(sin2φE[sin2θ] + cos2φE[(cosθ − E[cosθ])2]

+sinφcosφE[sinθ(cosθ − E[cosθ])])

=
1

2
ρ2(sin2φ(1− e−2σ2

θ ) + cos2φ(1− e−σ2
θ )2) (4)

(The last term in the third line integrates to zero. Simple trigonometric expressions

like sin2θ = 1
2
(1 − cos2θ) and the Gaussian integral above suffice to derive this

expression.).

Consider now the autocorrelation. Letx1, x2 be two points for which the cor-

relation coefficient of the tangent direction isr = r(‖x1, x2‖). Then,

CI(x1, x2) = E[(I(x1)− E[I(x)])(I(x2)− E[I(x)])]

= ρ2E[(sinφsinθ1 + cosφcosθ1 − cosφE[cosθ1]) ·
(sinφsinθ2 + cosφcosθ2 − cosφE[cosθ2])]

= ρ2(sin2φE[sinθ1sinθ2] + cos2φE[cosθ1cosθ2]− cos2φE[cosθ]2

=
1

2
ρ2(sin2φe−σ2

θ (erσ2
θ − e−rσ2

θ ) + cos2φ(e−σ2
θ (erσ2

θ + e−rσ2
θ )− 2e−σ2

θ ))
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Note that allsinθicosθj terms vanish due to symmetry. The rest of the derivation

requires us to change variables, to the sum and difference ofθ1 and θ2, which

are independent. We write their explicit (2D Gaussian) distribution, and use the

Gaussian integral.

¤
As expected, forr = 1 (same pixel), the correlation reduces to the variance

expression, and forr = 0 (distant pixels), the correlation becomes0. For rougher

surfaces (largerσ2
θ ) the correlation is lower for the same distance|x1−x2|, and for

the (impossible) white surface (independent normals,r = 0), the image is white

as well.

Note that the covariance in eq. 2 may be written as

CI(x1, x2) = sin2φf1(r(|x1 − x2|))
+ cos2φf2(r(|x1 − x2|)) (5)

where

f1(r(|x1 − x2|)) =
1

2
ρ2e−σ2

θ (erσ2
θ − e−rσ2

θ )

and

f2(r(|x1 − x2|)) =
1

2
ρ2(e−σ2

θ (erσ2
θ + e−rσ2

θ )− 2e−σ2
θ )

The covariance in eq. 5 is not a constant and it varies withφ. Note thatφ is the

angle between the light and the predominant surface normal in a planar patch of

the object, and so varies across the surface of an object. Therefore, it seems that

it is more difficult to learn the covariance and less justified to use a single filter

(as described below, in section 2.3) to implement whitening. Note, however, that

f1()/f2() ≈ (2 + σ2
θ)/σ

2
θ , implying that for say,σθ = 0.1, and for allφ > 12

degrees, the first term in eq. 5 is ten times larger than the second term and thus
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dominant. Therefore, we can conclude:

Covariance characterization for rough Lambertian plane: the second order

statistical behavior of a rough Lambertian plane surface, illuminated by a single

source, is characterized by an autocorrelation function which, for nearly every

illumination, is approximately invariant of the illumination direction up to a mul-

tiplicative factor.

For empirical verification of this result see Section 3.4. For a real object,

the normals may change substantially about the average direction, but still the

approximation of the autocorrelation by one function (and a slowly varying mul-

tiplicative factor) is good for many objects and most locations on them. This fails

only where the normal roughly points at the illumination source, or where there

are significant effects of perspective foreshortening. Note that for rougher objects,

associated with high normal direction variance, the image correlation is reduced

and the image gets closer to being white itself.

For image comparison, we are mostly concerned with the difference images,

which for Lambertian objects, behave as a single image does.

2.3 Whitening using AR models

The model described above gives the autocorrelation of reflected light images,

but usually its parameters (σ2
θ , r) are unknown. Estimating the autocorrelation

from data is considered to be a noisy unstable process. Fitting the parametric

Autoregressive (AR) model, is a way to get the whitening filter directly without

explicitly calculating the covariance [14].
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A sequencex(n) is called an AR process of orderp if it can be generated as

the output of the recursive causal linear system

x(n) =

p∑

k=1

a(k)x(n− k) + ε(n),∀n (6)

whereε(n) is white noise. The estimate

x̄(n) =

p∑

k=1

a(k)x(n− k) (7)

is the best linear MS predictor ofx(n) based on the previousp samples. For

Gaussian signals the prediction error sequence:ε(n) = x(n) − x̄(n) is white.

Therefore the prediction error filter is a whitening filter forx(n),

W = (1,−a1, . . . ,−ap). (8)

The AR model can be applied to the whitening of the difference image (eq.

1). We adopted a 2D “causal” model described in [14], where a gray levelx(n)

is predicted from the previous gray levels in ap × p neighborhood in column by

column scan (Figure 2). We denote this set of pixels byNn. As the image is not

truly a Gaussian AR process, we determine the size of the whitening filter based on

the image correlation. See section 3. Note that using a non-causal neighborhood

leads to a lower SSD, but the prediction error sequence is not white [14].

Sincex̄(n) is the best linear MS predictor ofx(n), the coefficientsak in eq.7

can be determined by solving

arg min
{ak}

∑

n|Nn∈image

(x(n)− x̄(n))2

This is an over-determined least squares problem that can be solved using SVD.

We propose to estimate the whitening filter in this way, using image differences

from the domain in which we will operate.
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Figure 2: A typical 2D “Causal” neighborhood used in our experiments. The
darkest pixel is the one where the gray level is estimated from the grey levels in
the other dark pixels.

Note that we could estimate the covariance matrix from subimage samples

and then use the Yule-Walker method [17] to get the AR coefficients. There are

some subtle difficulties with this approach: First, as shown above, the covariance

is not stationary, and therefore the covariance matrix is not specified. Moreover,

the average is not constant as well, and an estimate of the local average is required

for the Yule-Walker method.

Note that scaling all the grey levels by the same factor, would give a correlation

function which is the same up to a multiplicative constant. This is essentially what

happens when the angle between the average normal and the illumination direction

is changed, in the model described in section 2.2. Note however, that this does not

change the AR coefficients at all. Therefore, the whitening filter is invariant to a

multiplicative change in the correlation, implying that a space invariant filter may

be used for whitening the image.

The whitening filter depends on the image statistics. Intuitively, for smoother

images the correlation is larger and decorrelating it requires a wider filter. For

images which are not so smooth the decorrelation is done over a small range, and

the filter looks very much like the Laplacian, which is also known to have some

whitening effect. Therefore, for rougher images, we do not expect to perform
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better than an alternative procedure using the Laplacian. As we shall see later, for

smooth objects the performance difference is significant.

2.4 Recognition

We use the following recognition scheme as an application of our approach to im-

age comparison: A set of objects is represented in a library containing one image

for every object. LetIM1 , IM2 , . . . , IMj
, . . . be reference images in the library. Let

IQ be the query image of one of the objects from this set, taken with the same

pose, but different illumination. The task is to decide which of the objects is the

one in the query image.

The proposed basic algorithm is very simple:

1. For every reference image,IMj
, whiten the difference image to getW (IQ−

IMj
). Calculate theL2 normEj = ‖W (IQ − IMj

)‖.

2. Choose the model associated with the smallest whitened error norm,Ej.

This algorithm is used in the context of communication, where the given signal

(image) is a sum of the (known) clean signal (model) and uniform noise. The

situation here is a bit different: First, the reference imageIMj
was taken with

a different illumination intensity than the test image. Therefore, every scaled

version of it is a valid model as well. Minimizing the SSD over all scaled ver-

sions is equivalent to taking the SSD between the normalized whitened images,

‖ W (IMj
)

‖W (IMj
)‖ −

W (IQ)

‖W (IQ)‖‖. This normalization also compensates for the fact that some

objects are rougher than others, which makes the difference between two differ-

ently illuminated images of them larger.
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Figure 3: Whitening often reveals hidden differences: The left and middle image
in the top row correspond to different surfaces and one illumination. The third
one is created from the same scene used for the left image, but with a different
illumination. The bottom row shows the same images after whitening.

3 Experiments

We tested the whitening approach against other methods in several experiments.

The whitening approach was developed to handle smooth textureless surfaces on

which other methods perform poorly. Most of the experiments were designed with

this goal in mind, but we also experimented with the Yale database of human faces

[10], as an example of surfaces that contain albedo discontinuities and regions of

high curvature.

3.1 Synthetic images

The first set of experiments was done using synthetic images. Every scene was

created as a sum of random harmonic functions, with (roughly) fixed amplitudes

but random directions and phases. This way, we get an ensemble of different

images with similar statistical properties. These were rendered as Lambertian

surfaces with point sources.

For every set of such images we learned a whitening filter as the 2D causal
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Figure 4: Recognition success rate for simulations on synthetic smooth surfaces
using whitening, grey levels, Laplacian, Gradient Magnitude and gradient angles.
The success rate is plotted against the angle (in radians) between the illumination
source and the average surface normal. The solid curves correspond to the un-
normalized quantities and the dotted curves are for the normalized quantities.

filter that minimizes the MS prediction error. A typical filter had 265 coefficients

inside a23 × 23 window. For learning we used a fixed illumination, deviating

3π/8 degrees from thez direction and 1000-5000 random images. The learning

set was independent of the test set.

A test was done as follows: two random scenes were illuminated by the same

nearly vertical illumination to create two references imagesIr, I
′
r. The test image

It was synthesized from the first scene, with a different illumination, making an

angleφ with thez axis. A typical triple of such images is shown in Figure 3.

For comparison we also tested other algorithms using the SSD of the gray

level image, of the result of a Laplacian, of the magnitude of the gradient and of

its angle. Both non-normalized and normalized versions were tested for all repre-

sentations (except the gradient angle, for which normalization seems unnecessary
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Figure 5: Samples from the smooth real objects data set; top – frontal illumination,
bottom – side illumination.

and no normalization seems reasonable). See Figure 4 for the results.

We came to several conclusions:

1. For the relatively smooth images that we used, whitening was the best

method.

2. The advantage of the whitening method was higher when the filter was

larger but even for filters which were as small as7 × 7 the advantage was

substantial and consistent over all viewing angles except the very extreme

ones.

3. In particular whitening was always better than the Laplacian, even when

a 3 × 3 filter was used, implying that both large distance correlations and

causality are important.

4. In most cases, the normalized version worked better than the un-normalized

version.

3.2 Real Smooth Objects

The experiments above show that for smooth objects, Lambertian reflection and

no shadows, the whitening approach performs significantly better than other mea-
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Figure 6: Recognition success rate for experiments done with real smooth objects,
with several methods. The success rate is plotted against the average angle (in
degrees) between the illumination source and the average surface normal.

sures. We now relax these assumptions and repeat the experiment on real, smooth

objects that produce images with substantial shadows (Figure 5). We created eigh-

teen objects from clay and illuminated them by a single light source moving along

a half circle, so that its distance from the object is roughly fixed. We used a cam-

era placed vertically above the object, and took 14 images of every object with

different lighting directions at angles in the range[−70, 70] degrees to the verti-

cal axis. The images associated with a nearly vertical illumination (one for every

object) were chosen as the reference images.

The whitening filter was trained on the difference images between reference

images and corresponding images associated with the same object and six other

illuminations. Only twelve images associated with 2 objects (out of 18) were

used. We learned the whitening filter, as a 2D causal filter with25 coefficients

inside7× 7 windows.
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The task was to identify an object in a given image with unknown lighting

direction. All images of the 18 objects except the reference images were used

as query images (234 images). We divided the query images into four groups

according to their angular lighting direction:10o − 25o, 26o − 40o, 41o − 55o, and

56o− 70o. The plot in Figure 6 shows the performance of the whitening approach

in comparison to other tested measures (normalized versions).

Whitening again performed better than the other methods. Taking a closer look

at the data, we observed that for a few of the clay objects that were roughest, the

Laplacian, whitening and gradient angle performed equally well. For smoother

objects, however, whitening worked considerably better. The Laplacian couldn’t

whiten the smooth surfaces, because its size was insufficient to handle the high

correlations between the grey levels of the smooth surfaces.

3.3 Images of Face

To illustrate the limitations of the whitening method we tested it also on the Yale

face database [10], corresponding to rougher objects and associated with abrupt

albedo changes. We replicated the results in [6], (Figure 7) showing that the gra-

dient angle was indeed a winner of all the methods considered here. Whitening

does not perform well on this data, because it fails on edges, which can not be ac-

counted for by the model (section 2.2). The Laplacian works better then whiten-

ing, but worse than gradient angle, because it performs as an edge detector, which

is still sensitive to large illumination changes.
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Figure 7: Recognition success rate for experiments done with real faces (Yale
database), with several methods. The success rate is plotted against the average
angle (in degrees) between the illumination source and the average face normal.

3.4 Verifying Covariance Model

To confirm the multiplicative behavior of the covariance model described in Sec-

tion 2.2, we took a high resolution image of a real, approximately Lambertian

sphere, illuminated by a point source. We divided the image into50 × 50 pixel

patches, and calculated covariance in every patch using5×5 neighborhoods. Fig-

ure 8 shows the estimated covariance as a function of the distance. Each curve

represents a different patch. The plots confirm that covariance in different patches

differs by a multiplicative factor as claimed in Section 2.2.

4 Conclusions

In this work we have proposed a measure for image comparison of smooth sur-

faces under varying illumination. The measure was motivated by a simple statis-

tical model of smooth surfaces. This model showed that the error between two
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Figure 8: Covariance estimates for different patches of a real objects: left – non-
normalized covariances differ by multiplicative factors; right – covariances which
are normalized by the variance are almost the same for all angles.

images associated with the same object under different lighting may be modelled

as colored noise. We adapted well-known techniques of whitening to perform

matching of images corrupted by such noise.

We found that whitening was more effective than other representations for

comparing images of smooth surfaces taken under varying illumination condi-

tions. Previous methods have commonly used the Laplacian or the magnitude

of gradient, as whitening approximations. This seems to be adequate for rough

images but leads to inferior results for smoother ones.

We believe that recognition (or image comparison in general) should use all

the image information. Many current methods neglect photometric information

and thus cannot handle smooth objects. It seems that combined methods, using

both the (more geometric) information in edges and the (more photometric) infor-

mation in smooth patches, would yield superior results, especially in hard tasks.

References

[1] P.N. Belhumeur, J.P. Hespanha, and D.J. Kriegman. Eigenfaces vs. fisher-

faces: Recognition using class-specific linear projection.PAMI, 19(7):711–

720, July 1997.

20



[2] P.N. Belhumeur, D.J. Kriegman, and A.L. Yuille. The bas-relief ambiguity.

IJCV, 35(1):33–44, November 1999.

[3] R. Brunelli and T. Poggio. Face recognition: Features versus templates.

PAMI, 15(10):1042–1062, 1993.

[4] B. Bundschuh. A linear predictor as a regularization function in adaptive

image restoration and reconstruction. In5th Int, Conf. on Computer Analysis

of Images and Patterns, 1993.

[5] H. Bundschuh, B. Schulz and D. Schneider. Adaptive least squares image

restoration using whitening filters of short length. InSecond HST Image

Restoration Workshop, 1993.

[6] H.F. Chen, P.N. Belhumeur, and D.W. Jacobs. In search of illumination

invariants. InCVPR00, pages I: 254–261, 2000.

[7] M. L. Cox, I. J. Miller and Bloom J. A. Digital Watermarking. Morgan

Kaufmann, 2002.

[8] T. Depovere, G. Kalker and J.P. Linnartz. Improved watermark detection

using filtering before correlation. InIEEE Int. Conf. on Image Processing,

pages I: 430–434, 1998.

[9] O.D. Faugeras and W.K. Pratt. Decorrelation methods of texture feature

extraction.PAMI, 2(4):323–332, July 1980.

[10] P.N. Georghiades, A.S. Belhumeur and D.J. Kriegman. From few to many:

Generative models for recognition under variable pose and illumination.

PAMI, 23(6):643–660, 2001.

21



[11] I.S. Gradshteyn and I.M. Ryzhik.Table of Integrals, Series and Products.

New York, Academic, 1980.

[12] R.M. Haralick and L.G. Shapiro. Computer and robot vision. InAddison-

Wesley, 1992.

[13] D.W. Jacobs, P.N. Belhumeur, and R. Basri. Comparing images under vari-

able illumination. InCVPR98, pages 610–617, 1998.

[14] A.K. Jain. Fundamentals of digital image processing. InPrentice Hall, 1989.

[15] M. Lades, J.C. Vorbruggen, J. Buhmann, J. Lange, C. von der Malsburg, R.P.

Wurtz, and W. Konen. Distortion invariant object recognition in the dynamic

link architecture.TC, 42(3):300–311, March 1993.

[16] Z. Lin and Y. Attikiouzel. Two-dimensional linear prediction model-based

decorrelation method.PAMI, 11(6):661–665, June 1989.

[17] A. Papoulis.Probability, Random Variables, and Stochastic Processes. Mc-

Graw Hill, 3rd edition, 1991.

[18] W.K. Pratt.Digital Image Processing (First Edition). Wiley, 1978.

[19] L.P. Yaroslavsky. Digital Picture Processing. An Introduction.Springer

Verlag,Berlin, Heidelberg, 1985.

22


